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MOTIVATION

• The analytical capabilities of cost and schedule risk tools are advancing 

steadily.

• Most of these tools can serve as a powerful analytical platform to bring 

intelligence and insight to the decision making process. 

• There are other Management Science Models that have been widely used 

by various industries that can be brought to our community.

• Mathematical programming is a technique that has been widely applied to 

many management science problems such as logistics, queuing and 

resource planning.

• An important pillar of project management is resource allocation and 

optimization.

• Like to introduce the concept and framework of optimization to the 

cost/schedule community to stimulate thoughts and efforts in further 

advancing the capability of the current tools.
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MANAGEMENT SCIENCE MODELS

• There are generally two types of models:
• Descriptive Model – A model that represents relationship but does not indicate 

any course of actions. 

• Useful in predicting the behavior of a system but have no capability to identify the “best” 
course of action. For example:

• Most statistical models

• Regression Models – Cost estimate models

• Schedule Models, JCL

• Model Structure – Dependent and Independent Variables

• Prescriptive Models – A model prescribes the course of action that the decision 
maker should take to achieve a defined objective.

• It implies that the objective is embedded in the model and it is possible to identify the effect 
of different courses of action on the objective. It may include a descriptive sub model.

• Model Structure
• Objective function(s)

• Decision variables

• Constraints – Equality or Inequality

• Decision Variable Bounds
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WHAT IS MATHEMATICAL PROGRAMMING

• Mathematical Programming is a collection 

of methods for solving optimization 

problems:

• If f(x), g(x),h(x) is linear, then it is Linear 

Programming (LP)

• If any of f(x), g(x), h(x) are non-linear, 

then it is Non-Linear Programming 

(NLP)

• If Decision Variables x are integers, then 

it is Integer Programming

• If Decision Variables contain both 

integers and non-integers, then it is Mix-

Integer Programming

• If the optimization is based on a 

sequence of optimal decisions, then it is 

called Dynamic Programming (for 

instance, the game of Nim)
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General mathematical programming 
formulation:

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒: 𝑓(𝑥)

Subjected to:

𝑔 𝑥 ≤ 𝑏,

ℎ 𝑥 = 𝑏𝑒𝑞 ,

𝑙 ≤ 𝑥 ≤ 𝑢

Where,

f(x) is an objective function(s) to be optimized

X is the decision variable

g(x) is a function of inequality constraint

h(x) is a function of equality constraint

l,u are upper and lower bounds of the decision 

variables



APPLICATION OF MATHEMATICAL 
PROGRAMMING

• Mathematical Programming has been applied in virtually any industry that 

seeks optimization solutions:

• Revenue optimization and crew rotation for the Airline industry (NLP)

• The famous travelling salesman problem can be formulated in mathematical 

programming (Integer Linear Programming)

• Valuation of financial derivatives (Dynamic Programming)

• Portfolio replication of Exchange Traded Funds (ETFs)(Quadratic Programming)

• Critical Path Method/schedule crashing (LP)

• Minimum variance portfolio (NLP)

• Resource allocation (LP or NLP)
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EXAMPLES AND FORMULATIONS
(MAXIMIZE THE PROFIT OF A CHLORINE PLANT)

• Company owns several 
manufacturing facilities through 
out North America

• Production of different material 
is strictly balanced by chemical 
equations

• There is derivative process and 
markets for derivative products

• Power is about 60% of variables 
cost and power prices varies by 
location and season

• Company lease a number of 
railcars for logistic

• Model maximizes profits 
subjected to the constraints of 
resource, logistics and  
demands

7

Main Process
NaCl

H
2
O

Derivative

Process

Market

Other Pioneer

Plants

Chlorine

H
2

Chlorine,

Caustic

Chlorine, Caustic

Market

HCl, BleachH
2

Caustic

Rayon, Membrane,

Diaphragm, Chemical



PLANT OPERATION AND LOGISTICS 
MANAGEMENT

•They have two questions:

• What is the optimal production level at each plant based on regional demand 

pattern? 

• What is the optimal sales volume based on price and location, and what is the 

optimal means of delivery ? 
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EXAMPLES AND FORMULATIONS
(CONSTRUCTING A MINIMUM VARIANCE PORTFOLIO)
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Minimize : WWp  '2

Subjected to:

Solution:

For a 3 asset Portfolio:



APPLICATION OF LP IN  SCHEDULE ANALYSIS

A simple example for calculating the  

critical path for a schedule.
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Subjected To:  

𝑇𝐹𝑖𝑛𝑖𝑠 ℎ ≥ 𝑇𝐸 + 21                      

𝑇𝐹𝑖𝑛𝑖𝑠 ℎ ≥ 𝑇𝐻 + 28  

𝑇𝐹𝑖𝑛𝑖𝑠 ℎ ≥ 𝑇𝐽 + 45  

𝑇𝐸 ≥ 𝑇𝐷 + 20  

𝑇𝐻 ≥ 𝑇𝐷 + 20  

𝑇𝐽 ≥ 𝑇𝐷 + 20  

𝑇𝐽 ≥ 𝑇𝐼 + 30  

𝑇𝐺 ≥ 𝑇𝐶 + 5  

𝑇𝐺 ≥ 𝑇𝐹 + 25  

𝑇𝐼 ≥ 𝑇𝐴 + 30  

𝑇𝐹 ≥ 𝑇𝐴 + 30  

𝑇𝐶 ≥ 𝑇𝐵 + 15  

𝑇𝐷 ≥ 𝑇𝐺 + 14  

𝑇𝐵 ≥ 𝑇𝐴 + 30  

𝐴𝑙𝑙 𝑇𝑠 ≥ 0  

Minimize: Tfinish



APPLICATION OF LP IN  SCHEDULE ANALYSIS
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Activity Duration T

A 90 0

B 15 95

C 5 110

D 20 129

E 21 149

F 25 90

G 14 115

H 28 149

I 30 119

J 45 149

Finish 194

Minimize this

(Objective Function)

Change these

(Decision Variables)

Subjected to these constraints

(Constraint equations)

We want to minimize finished time T_finish
By setting predecessor constraints as inequality constraints



APPLICATION OF LP IN  SCHEDULE ANALYSIS
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Minimize this

(Objective Function)

Change these

(Decision Variables)

Subjected to these constraints

(Constraint equations)

Activity Duration T Slack

A 90 0 0

B 15 90 5

C 5 105 5

D 20 130 0

E 21 150 24

F 25 91 0

G 14 116 0

H 28 150 17

I 30 120 29

J 45 150 0

Finish 195

Using equality constraint to calculate slack



LP AND SCHEDULE CRASHING

• For the same problem, now we 

want to crash the schedule by 20 

days. 

• Due to different type of tasks, there 

is a different set of crash costs.

• There is also a limit to how many 

days of duration you can shrink 

since you can not reduce a task to 

zero even at infinite cost.

• Now we want to crash the 

schedule by 20 days with a 

minimum of cost.

• The new objective function to be 

minimized is the sum of the cost of 

crashed days
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Activity Duration

Crashed 

Duration

Crash 

Cost/Day

A 90 10 200

B 15 5 100

C 5 0 150

D 20 5 150

E 21 6 150

F 25 5 200

G 14 4 200

H 28 5 150

I 30 7 170

J 45 10 200

Crashed Duration = Max. # of days that can be crashed



LP AND SCHEDULE CRASHING
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Adding a new set of constraints:

Crashed days <= Crashed Duration
Tfinish = 174 Days

Activity Duration

Crashed 

Duration

Crash 

Cost/Day Slack Crash days

A 90 10 200 0 10

B 15 5 100 5 0

C 5 0 150 5 0

D 20 5 150 0 5

E 21 6 150 24 0

F 25 5 200 0 0

G 14 4 200 0 0

H 28 5 150 17 0

I 30 7 170 29 0

J 45 10 200 0 5

Finish 194 3750 174

Minimize this 

(Sum of Cost * Crashed Days)

What if I want to reduce total duration to 174 days?

To achieve this



Activity Duration

Crashed 

Duration

Crash 

Cost/Day Slack Crash days

A 90 10 200 0 10

B 15 5 100 5 0

C 5 0 150 5 0

D 20 5 150 0 5

E 21 6 150 24 0

F 25 5 200 0 5

G 14 4 200 0 4

H 28 5 150 17 0

I 30 7 170 29 0

J 45 10 200 0 2

Finish 194 4950 168

LP AND SCHEDULE CRASHING
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Adding a new set of constraints:

Crashed days <= Crashed Duration

Total Cost <= $5000
Minimize this 

What is the new total duration given $5000?

Final Cost 



RISK MITIGATION/RESOURCE ALLOCATION
(EXAMPLE)

• A portfolio of 10 risks. They could be either 

cost or schedule risks.

• Each risk has a mitigation strategy to reduce 

the amount of risks, in terms of amount 

reduction in Mean and Standard Deviation.

• There is also a cost associated with each 

risk reduction strategy

• Risks are either mitigated or not, there is no 

partial risk mitigation.

• If there is a certain amount of resource ($) 

available, what is the optimal way to allocate 

which risk to mitigated?

• So the Objective Function can be:

• Overall Mean?

• Portfolio Standard Deviation?

• A combination of the two?
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Risk No. Mean SD Mean SD Cost

1 10 10 8 7 5

2 30 10 24 7 24

3 20 10 16 7 12

4 15 5 12 3.5 12

5 60 20 48 14 48

6 50 20 40 14 40

7 35 15 28 11 22

8 45 15 36 10 30

9 75 20 60 14 60

10 90 25 72 18 50

Before Mitigation Mitigation Reduction



Risk No. Mean SD Mean SD Cost DV

1 10 10 8 7 5 0

2 30 10 24 7 24 1

3 20 10 16 7 12 1

4 15 5 12 3.5 12 1

5 60 20 48 14 48 0

6 50 20 40 14 40 0

7 35 15 28 11 22 1

8 45 15 36 10 30 1

9 75 20 60 14 60 0

10 90 25 72 18 50 1

Before Mitigation Mitigation Reduction

RISK MITIGATION/RESOURCE ALLOCATION
(EXAMPLE)
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Mean Reduction 188

Cost 150

Total Fund 150

Maximize this, by changing these

With this available fund

𝑀𝑎𝑥:  𝜇𝑖𝐷𝑖

10

𝑖=1

 

 𝐶𝑖𝐷𝑖 ≤ 𝐹

10

𝑖=1

 

Formulation:

Subjected To:

𝐷𝑖 = [0,1] 



SOME THOUGHTS ON POTENTIAL 
APPLICATION

• Resource load schedule
• Optimize resource allocation, or

• Optimize schedule duration, or

• A combination of both

• Operational constraints such as skill set mix can be modelled as constraint equations

• Budget constraint scenario
• Ideally suited for mathematical programming model

• Operational constraints such as how to move work or content, budget etc. can be modelled by 

constraint equations

• Objective functions to be optimized can be schedule delays, resource allocations, or any other 

project objectives or goals

• Risk Mitigation
• One can define a risk metrics as a objective function to be optimized

• Constrained by resource or information availability

• You may think of many others
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SUMMARY AND CONCLUSION

• The cost and schedule community has been mainly been perfecting different 

descriptive models:
• Better regression model for cost estimates

• Increasing capability and efficiency in simulations

• Better visualization of results

• The next natural step in the evolution of analytics should include Prescriptive Models 

to bring more intelligence out of the model for decision makers.

• This paper has briefly introduced the concept of optimization, objective functions, and 

decision variables. The tool for optimization is mathematical programming methods.

• Through some simple examples, this paper demonstrated that mathematical 

programming can:
• Calculate critical path

• Optimally crashing schedule

• Optimally allocating resource for risk mitigation

• The utility of Prescriptive models are only limited by our own creativity.
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